| Name: | | Date: | |---------|--|--| | | Natural and Urban "Stormwater" Wate Instructions: Before the teacher's presentation begins, complete the lef During the presentation, complete the right column. After the pre | t column by writing in your known answers or best guesses. | | Slide# | Your Predictions | From the Presentation | | Slide 1 | Our planet is covered by water, an astonishing _71 percent! If the world was uniform all the way around, water would cover the planet to a depth of2.6 km, (1.6 miles). | Our planet is covered by water, an astonishing _71 percent! If the world was uniform all the way around, water would cover the planet to a depth of2.6 km, (1.6 miles). | | Slide 2 | It would take15.5 billion years for that volume of water to go over the Niagara Falls. Our planet is4.54 billion years old. It takes the average American7.5 years to use the amount of water that flows over Niagara Falls every second. | It would take15.5 billion years for that volume of water to go over the Niagara Falls. Our planet is4.54 billion years old. It takes the average American7.5 years to use the amount of water that flows over Niagara Falls every second. | | Slide 3 | 2.5_ % of the water on our planet is considered fresh water. 1.7_ % trapped as polar ice,0.76 % fresh groundwater, and0.1_ % in the planet's surface and atmosphere. That means ~131_ gallons are available per person per day. | 2.5 % of the water on our planet is considered fresh water. 1.7 % trapped as polar ice, 0.76 % fresh groundwater, and 0.1 % in the planet's surface and atmosphere. That means ~ 131 gallons are available per person per day. | | Slide 4 | Civil and environmental engineers design systems to pump water fromsurface andgroundwater sources to water treatment facilities and then to our homes. It is their job to providequality drinking water and a sufficientquantity of water. | Civil and environmental engineers design systems to pump water fromsurface andgroundwater sources to water treatment facilities and then to our homes. It is their job to providequality drinking water and a sufficientquantity of water. | | Slide 5 | Civil and environmental engineers use therates ofreaction to design treatment systems and must understand thephase transformation occurring as a result of the reaction, in order to provide water that is safe to drink and release back into nature. | Civil and environmental engineers use therates ofreaction to design treatment systems and must understand thephase transformation occurring as a result of the reaction, in order to provide water that is safe to drink and release back into nature. | | Slide 6 | These engineers must have an -depth knowledge of the water cycle. List the different components of the water cycle: evaporationstormwater runoffcondensationgroundwater flowprecipitationplant uptake infiltrationtranspiration transpirationtranspiration | These engineers must have an -depth knowledge of the water cycle. List the different components of the water cycle: evaporationstormwater runoffcondensationgroundwater flowprecipitationplant uptake infiltrationtranspiration | | Slide 7 | Evaporation: When water changes from a | Evaporation: When water changes from a | |----------|--|--| | | liquid to gas or vapor. | liquid to gas or vapor. | | | Phase change: Heat from the sun creates energy that | Phase change: Heat from the sun creates energy that | | | <u>breaks</u> the bonds holding water molecules together. | breaks the bonds holding water molecules together. | | | Condensation: When water vapor changes | Condensation : When water vapor changes | | Slide 8 | from gaseous state (vapor) to the liquid phase. | from gaseous state (vapor) to the liquid phase. | | | Phase change: Evaporated water vapor condenses in the | Phase change: Evaporated water vapor condenses in the | | | atmosphere due tolower temperatures resulting fromless atmospheric pressure. | atmosphere due to Lower temperatures resulting from Less atmospheric pressure. | | | Rate: On average, the residence time for moisture in the | Rate: On average, the residence time for moisture in the | | | atmosphere is <mark>8.2</mark> days | atmosphere is8.2 days | | | A large cumulonimbus cloud can weigh as much as a 747 jumbo jet. | A large cumulonimbus cloud can weigh as much as a 747 jumbo jet. | | | So why does it not come crashing down to the ground? Answer: The | So why does it not come crashing down to the ground? Answer: The | | | rising air responsible for the cloud formation keeps the cloud floating in the air because the air below the cloud is | rising air responsible for the cloud formation keeps the cloud | | | denser than the cloud. | floating in the air because the air below the cloud isdenser than the cloud. | | | derisei than the cloud. | derisei than the cloud. | | | • Precipitation : Condensed water vapor that | Precipitation : Condensed water vapor that | | Slide 9 | falls to Earth as rain, snow or hail. | falls to Earth as rain, snow or hail. | | | Phase change: Water molecules combine with tiny <u>dust</u> | Phase change: Water molecules combine with tinydust | | | particles that act as a nucleus to form cloud droplets. | particles that act as a nucleus to form cloud droplets. | | | Millions of collisions occur with other droplets until the | Millions of collisions occur with other droplets until the | | | mass of the droplet creates a fall velocity that isgreaterthan the cloud updraft speed, resulting in rain, snow or hail. | mass of the droplet creates a fall velocity that isgreaterthan the cloud updraft speed, resulting in rain, snow or hail. | | | than the cloud updrait speed, resulting in rain, show of hair. | than the cloud updrait speed, resulting in rain, show of hair. | | | Infiltration: Movement of water into the media layer. | Infiltration: Movement of water into the media layer. | | Slide 10 | Percolation : Movement of water within the media layer. | Percolation : Movement of water within the media layer. | | | Media layer : The combination of inorganic and/or | Media layer: The combination of inorganic and/or | | | organic earth materials (for example, sand, soil, mulch, compost, | organic earth materials (for example, sand, soil, mulch, compost, | | | limestone, granite, gravel). | limestone, granite, gravel). | | | • Stormwater runoff : The flow of rainwater that occurs as | Stormwater runoff : The flow of rainwater that occurs as | | Slide 11 | a result of the precipitation rate exceeding the soil infiltration and | a result of the precipitation rate exceeding the soil infiltration and | | | percolation rate or as a result of impervious surfaces. | percolation rate or as a result of impervious surfaces. | | | Also generated from <u>impervious surfaces</u> such as roofs, roads, | Also generated from <u>impervious surfaces</u> such as roofs, roads, | | | and sidewalks. | and sidewalks. | | | Collectsparticulates,nutrients, andheavy | Collectsparticulates,nutrients, andheavy | | | metals as it travels down the street and into the storm sewer. | metals as it travels down the street and into the storm sewer. | | | |---------------------------------|---|---|--|--| | Slide 12 | Groundwater flow : The lateral or horizontal flow of water beneath the ground surface. | Groundwater flow: The lateral or horizontal flow of water beneath the ground surface. | | | | | Groundwater levels are typically the surface level at which you can | Groundwater levels are typically the surface level at which you can | | | | | see water in alake or the level of awell Storm water replenishes the groundwater table and underground | see water in alake or the level of awell Storm water replenishes the groundwater table and underground | | | | | aquifer throughinfiltration andpercolation of water, which then flows to streams, lakes and wells. | aquifer throughinfiltration andpercolation of water, which then flows to streams, lakes and wells. | | | | Slide 13 | Plant uptake: The process of plants absorbing water
and nutrients from roots in order to grow. | Plant uptake : The process of plants absorbing water and nutrients from roots in order to grow. | | | | | Phase change: Plants use the energy from the sun | Phase change: Plants use the energy from the sun | | | | | (photosynthesis) andcapillary action to draw up water and nutrients and transform inorganic nutrients into organic above- | (photosynthesis) andcapillary action to draw up water and nutrients and transform inorganic nutrients into organic above- | | | | | ground and below-ground biomass. | ground and below-ground biomass. | | | | Slide 14 | •: Transpiration: The process by which plants release water into the air. | •: Transpiration: The process by which plants release water into the air. | | | | | In the fall, trees typically drop their leaves in order to | In the fall, trees typically drop their leaves in order to | | | | | conserve water by stopping the pathway for transpiration | conserve water by stopping the pathway for transpiration | | | | | As a result of transpiration, an acre of corn can give off 3,000-4,000 gallons of water per day. | As a result of transpiration, an acre of corn can give off 3,000-4,000 gallons of water per day. | | | | | As a result of transpiration, a large oak tree can give off 40,000 gallons of water per year. | As a result of transpiration, a large oak tree can give off 40,000 gallons of water per year. | | | | Additional notes and questions: | Urban "Stormwater" Water Cycle — Vocabulary and Definitions | | | |----------|--|---|--| | Slide 15 | surface water | Water that is contained by stormwater ponds, rivers, lakes, estuaries, bays, dams, wetlands, oceans or Gulf Coast areas | | | | impervious surface | A surface that water will NOT pass through. | | | | pervious surface | A surface that water will pass through. | | | | wastewater | Water that exits your home through a drain. | | | | storm sewer | A series of pipes that collects and transports only stormwater. | | | | sanitary sewer | A series of pipes that collects and transports only wastewater and does not include stormwater. | | | | combined sewer | A series of pipes that collects and transports stormwater and wastewater. | | | | urban infrastructure | A structure or system that supports the urban environment. Examples: Roads, bridges, buildings, water distribution, sanitary and storm sewers, stormwater pond, electricity transmission lines, cable and internet. | | | Slide 16 | Your RAFT Assignment: Take on the role of a journalist to describe the journey through the urban water cycle—from a water droplet's point of view. You are a travel magazine journalist for <i>Urban Environment Weekly</i>. Your assignment this week is to follow the life of a drop of water as it makes its way through the urban environment. In your article, include all the descriptive details about whom the drop met and what it encountered along the way. | | |