Name:	Date:	

Houston, We Have a Problem! Lesson – Rocket Calculation Worksheet

Pick a rocket and engine to achieve a maximum height of 100 meters.

Check your values every 5 calculations with your teacher to make sure you are on track.

1. $m_b = m_R + m_E - m_p/2$ Note: make sure to use units of kilograms, not grams.

m_b is the average mass of the rocket during the <u>boost</u> stage. (kg)

m_{Rocket} is in the rocket table (kg)

m_{Engine} is in the engine table (initial mass with propellant) (kg)

 $m_{propellant}$ is in the engine table (propellant mass) and the ½ factor in the equation is the averages the propellant for the boost stage. (kg)

2. $k = \frac{1}{2} * \rho * C_d * A$ k is the air drag constant (kg/m)

 $C_d = 0.75$, the drag coefficient for an average rocket (has no units)

$$\rho = air density = 1.223 \text{ kg/m}^3$$

A is the cross-sectional area of the rocket (m²).

Use the *diameter* of the rocket in the rocket table to calculate the *area*.

3. $T = I/\tau$ $\tau = \text{thrust duration is in the engine table (s)}$

I = total impulse is in the engine table (Ns) Note: This is an average impulse.

T = average motor thrust (N)

4. $q = \sqrt{\frac{T - m_b * g}{k}}$ T, k, and m_b calculated above

g is the acceleration of gravity at 9.81 m/s²

 \boldsymbol{q} is an intermediate value needed to solve future equations to ultimately determine the boost height. (m/s)

5. $p = \frac{2*k*q}{m_b}$ k, q, and m_b calculated above

p is an intermediate value needed to solve future equations to ultimately determine the boost height. $(s\ensuremath{^{-1}})$ 6. $v_{\tau} = q * \frac{1 - e^{-p * \tau}}{1 + e^{-p * \tau}}$ $\tau = \text{thrust duration from engine table (s)}$

 v_{τ} is the velocity at the **end of burnout** (m/s)

7. $h_b = \frac{m_b}{2k} * \ln \left(\frac{q^2}{q^2 - v_\tau^2} \right)$ k, q, and m_b and v_τ calculated above

 h_b = height during the **boost stage** (m)

- 8. $m_c = m_r + m_e m_p$ $m_c = \text{mass of rocket during the costing phase (kg)}$
- 9. $q_c^2 = \frac{-m_c * g}{k}$ k and m_c calculated above, $\mathbf{g} = 9.81 \text{ m/s}^2$

 q_c^2 is an intermediate value needed to solve a future equation to ultimately determine the coast height. (m²/s²) Note: q_c^2 is a negative value

- 10. $h_c = \frac{m_c}{2k} * \ln{(\frac{q_c^2 v_{\tau}^2}{q_c^2})}$ h_c is the **coasting height** in (m)
- 11. $h_T = h_b + h_c$ h_T is the total height in (m) (restricted to 100 m, a small soccer field, for example)

Questions

1. What parameters are changing over the course of the flight? Is mass constant?

2. What is the *average* thrust for your selected rocket? *Hint: The table included in your* Rocketry Handout *has total impulse and total burn time*.

free fall. Note: momentum	m = mass*velocity _{at impact}			
What forces are acting on the rocket? Draw a free body diagram for each stage. Assume a vertical flight.				
Boost	Coast	Descent		
Why is lift not considered	in these equations?			
. Explain how rockets are go	overned by Newton's three laws in	your own words (not with		
formulas):	refined by frewton b times laws in	i your own words (not with		

	b)	2nd law
	c)	3rd law
3.	Wł	nat parameters govern rocket height?
9		t your engine size
		t your rocket body selection
11.	Lis	t your calculated height
12.	Lis	t your mission purpose (make up a pretend or not so pretend mission of your own).