Derivations

This worksheet is intended to document the derivation of the least squares
procedure followed to fit Model 1 and Model 2 to acceleration data. It is not
needed during the activity, but may be adapted to use in student research
or marking period project.

1 Piecewise constant model (Model 1)

We are given acceleration values aq,as,--- ,ay for the times tq,t9, -+, tn.
Our goal is to fit a constant ¢; to the data over the interval 0 < ¢ < ¢y, and
another constant c, over the interval ¢t < t < t5. In doing so, we must make
sure that the total area under the fitted graph is equal to zero, corresponding
to zero initial and final racer velocities. This is a constrained least squares
problem. Let N7 and N, denote the number of acceleration data points that
fall in time intervals 0 < ¢ < t; and t; < t < ty. We can then minimize

N1 N2
F = Z (Cl — Cbi)g + Z (CQ - ai)Q (1)
i=1 i=N1+1
subject to the constraint
G = Cltl + Co (tQ — tl) =0. (2)

We can solve this problem by forming the Lagrangian

gradF' = A\gradG, and G = 0, (3)



which gives us three equations in three unknowns

N1
2 Z (Cl — CLZ‘) = )\tl,
i=1

2 Z (Cz—ai):)\(tg—tl),

i=N1+1
Cltl + Co (tg - tl) = 0.

Eliminating A from equations 1 and 2 leaves us with two linear equations in
two unknowns c¢; and co

ity + o (ta — 1) .

When we solve these two equations for the unknowns ¢; and ¢y, we get

ty (t1 — )

C1 = )
(N3 + (t — t2)* Ny) ©)
¢ — t7 (ty —t2) 8
(B2No + (t1 — t2)> Ny
where (3 is
1
b= tlzal tl—t2 Z i )

i=N1+1

These formulas are implemented in the Analysis Spreadsheet.

2 Piecewise linear model (Model 2)

We are given acceleration data ay,as,--- ,ay along with times tq,t9,--- , 1y,
and we want to fit a line oy + (1t to data over the interval 0 < ¢ < ¢; and
another line oy + (ot to data over the interval t; < t < t5. Whereas we
had to find only two unknowns in the case of the piecewise constant model,
in the piecewise linear model, we need to find four unknowns. Let N; and



N5 denote the number of acceleration data points that fall in time intervals
0<t<t;and t; <t <ty. We can then minimize

Ny N2
Z (aq + But; — ai)2 + Z (ag + Bot; — Clz’)Q (8)
=1 i=N1+1

subject to the zero area constraint
1 1
mh+§mﬁ+@ayﬁg+§@@§¢3:0. (9)

This problem is more easily solved by working with matrices. Let’s define a
vector of unknowns

0 = ( ar B g o )t, (10)
two vectors of acceleration measurements
Alz(a/l o e aNl )t7
: (11)
Azz(aN1+1 CZNQ),
a vector of constants
C=(t 3t] (ta—t1) $(13—13) )t, (12)

and two matrices 77 and 15 as

1 ... 1
B ty oty
Tl - O . O ) (13>
0 0
0 0 \"
0 0
tN1+1 tN2

We can now write our constrained optimization as follows. Mimimize the

quantity
(A — Th0)" (A, — Ti0) + (Ay — Tu0)' (A — Th0) (15)

with respect to 6, subject to the constraint

C'0 = 0. (16)



To solve this problem, we form the Lagrangian

1

1=3
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Equating the derivative to zero gives us

1

0= (TITy + TiTs) " (TEA + TEA) — (TIT + TET,) " CA. - (18)

To solve for A, we can plug in for the constraint to get

—1
A= (O (0T + ) T ) O (1T + 1) T (1A + TIA))
(19)
Substituting this expression for X in equation (18) gives us the solution

Mtcot
g M 20)
1

where

M1 - TltTl + T2tT2

21
My = TUA, + TiAs. 21)

This formula is implemented in the Analysis Spreadsheet.



